Immunocytochemistry and distribution of parabrachial terminals in the lateral geniculate nucleus of the cat: a comparison with corticogeniculate terminals.
نویسندگان
چکیده
We used immunohistochemistry in cats to demonstrate the presence of brain nitric oxide synthase (BNOS) in cholinergic fibers within the A-laminae of the lateral geniculate nucleus. We used a double labeling procedure with electron microscopy and found that all terminals labeled for choline acetyltransferase (ChAT) in the geniculate A-laminae were double labeled for BNOS. Also, some interneuron dendrites, identified by labeling for gamma-aminobutyric acid (GABA), contained BNOS, but relay cell dendrites did not. We then compared parabrachial and corticogeniculate terminals, identifying the former by BNOS/ChAT labeling and the latter by orthograde transport of biocytin injected into cortical area 17, 18, or 19. All corticogeniculate terminals and most BNOS- or ChAT-positive brainstem terminals displayed RSD morphology, whereas some brainstem terminals exhibited RLD morphology. However, parabrachial terminals were larger, on average, than corticogeniculate terminals. We also found that parabrachial terminals were located both inside and outside of glomeruli, and they always contacted relay cell dendrites proximally among retinal terminals (the retinal recipient zone). In contrast, the cortical terminals were limited to peripheral dendrites (the cortical recipient zone). Thus, little if any overlap exists in the distribution of parabrachial and corticogeniculate terminals on the dendrites of relay cells.
منابع مشابه
Relative numbers of cortical and brainstem inputs to the lateral geniculate nucleus.
Terminals of a morphological type known as RD (for round vesicles and dense mitochondria, which we define here as the aggregate of types formerly known as RSD and RLD, where "S" is small and "L" is large) constitute at least half of the synaptic inputs to the feline lateral geniculate nucleus, which represents the thalamic relay of retinal input to cortex. It had been thought that the vast majo...
متن کاملDistribution of synapses in the lateral geniculate nucleus of the cat: differences between laminae A and A1 and between relay cells and interneurons.
Laminae A and A1 of the lateral geniculate nucleus in the cat are generally considered to be a structurally and functionally matched pair of inputs from two eyes, although there are subtle light microscopic and physiological differences. The present study aims to display ultrastructural differences between these two laminae based on electron microscopic observances on the connectivity patterns ...
متن کاملRelative distribution of synapses in the A-laminae of the lateral geniculate nucleus of the cat.
Previous electron microscopic studies of synaptic terminal distributions in the lateral geniculate nucleus have been flawed by potential sampling biases favoring larger synapses. We have thus re-investigated this in the geniculate A-laminae of the cat with an algorithm to correct this sampling bias. We used serial reconstructions with the electron microscope to determine the size of each termin...
متن کاملSynapsin utilization differs among functional classes of synapses on thalamocortical cells.
Several proteins in nerve terminals participate in synaptic transmission between neurons. The synapsins, which are synaptic vesicle-associated proteins, have widespread distribution in the brain and are assumed essential for sustained recruitment of vesicles during high rates of synaptic transmission. We compared the role of synapsins in two types of glutamatergic synapses on thalamocortical ce...
متن کاملTHE JOURNAL OF COMPARATIVE NEUROLOGY 334:410-430 (1993) Evidence That Cholinergic Axons From the Parabrachial Region of the Brainstem Are the Exclusive Source of Nitric Oxide in the Lateral Geniculate Nucleus of the Cat
We investigated the source of axons and terminals in the cat's lateral geniculate nucleus that stain positively for NADPH-diaphorase. The functional significance of such staining is that NADPH-diaphorase is identical to the enzyme nitric oxide synthetase, and thus it is thought to reveal cells and axons that use nitric oxide as a neuromodulator. Within the lateral geniculate and adjacent perige...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of comparative neurology
دوره 377 4 شماره
صفحات -
تاریخ انتشار 1997